On the variational principle for the non-linear Schrödinger equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves

The unsmooth boundary will greatly affect motion morphology of a shallow water wave, and a fractal space is introduced to establish a generalized KdV-Burgers equation with fractal derivatives. The semi-inverse method is used to establish a fractal variational formulation of the problem, which provides conservation laws in an energy form in the fractal space and possible solution structures of t...

متن کامل

On a Variational Principle for the Navier-stokes Equation

In this paper we study the variational principle for the Navier-Stokes equation described in [Gom05], and clarify the role of boundary conditions. We show that in certain special cases this variational principle gives rise to new models for fluid equations.

متن کامل

On Non - Linear Schrödinger Equation with Magnetic Field

We study the non-linear Schödinger equation with time depending magnetic field without smallness assumption at infinity. We obtain some results on the Cauchy problem, WKB asymptotics and instability.

متن کامل

Variational solutions for the discrete nonlinear Schrödinger equation

The interaction and propagation of optical pulses in a nonlinear waveguide array is described by the discrete nonlinear Schrödinger equation i∂zψn = −D(ψn+1 + ψn−1 − 2ψn) − γ|ψn|ψn, (1) whereD is a dispersion (or diffraction) coefficient, and γ is a measure of the nonlinearity. By means of the variational approximation, we study the discrete soliton solutions of this equation. We use a trial fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Chemistry

سال: 2019

ISSN: 0259-9791,1572-8897

DOI: 10.1007/s10910-019-01082-5